Massive Stars Journal Club Department of Astronomy University of Geneva

Colour evolution of Betelgeuse and Antares over two millennia, derived from historical records, as a new constraint on mass and age

R. Neuhäuser, G. Torres, M. Mugrauer, D. L. Neuhäuser, J. Chapman, D. Luge, M. Cosci

MNRAS 516 (1), 693-719 (2022)

Presented by Joris Josiek

Introduction

- <u>Goal</u>: pre-telescopic colour records of stars \rightarrow new test of evolutionary models
 - HRD crossed within ~10⁴ yr (for 8 to 18 Msol) → noticeable change possible between antiquity and today.
 - Constraints on mass, age, evolutionary state of supergiants
- <u>Main objects of focus</u>: Betelgeuse and Antares (among other candidates for recent colour change)
 - Today, both are red supergiants

	Color (B-V)	Absolute mag. (V)		
Betelgeuse	+1.78	-5.59 or -6.14		
Antares	+1.88	-5.62		

• Authors present an interdisciplinary study involving astronomy, history and physiology.

Selecting stars

Searching for stars that may have undergone a colour change in historical times.

- Compile colour indices (B-V) of the 236 stars down to an apparent magnitude of 3.3
 - Mainly from Tycho catalog (1997) and Hipparcos catalog (1997) and single sources.
- Figure 2: brightest stars and MIST tracks for solar metallicity and v/v_{\text{crit}}=0.4
- Select Antares and Betelgeuse (located towards the end of the Hertzsprung gap) as prominent stars.

Figure 2. Colour-magnitude-diagram (CMD) for the brighter stars ($M_V \leq -3.9 \text{ mag}$), similar to Fig. 1, with tracks for 8, 10, 12, 13, 14, ... 20 M_{\odot} (most labeled) from the MIST series (Choi et al. 2016); dots indicate the (unequal) MIST time resolution. While the MIST tracks for 8, 10, and 13 M_{\odot} show pronounced blue loops, those for 12 and $\geq 14 M_{\odot}$ do not. Betelgeuse and Antares A are seen on the upper right in red with overlapping error bars. Betelgeuse is also plotted once in black for the larger Harper, Brown, & Guinan (2008) distance. Other stars in the Hertzsprung gap discussed in the Sects. 3.4 & 3.5 are indicated as follows: a: π Pup (Ahadi), b: ϵ Peg (Enif), c: β Ara, d: ϵ Gem (Mebsuta), e: ϵ Car (Avior), f: α Car (Canopus), g: γ Cyg (Sadr), and h: δ CMa (Wezen); the star just below the 8 M_{\odot} track is Polaris.

Historical method – Sources

 Search historic records before 1609 CE for any star in the sample of 236 brightest stars.

Sources: (some direct, some secondary)

- Greek and Latin manuscripts from Mediterranean antiquity
 - Aratos 'Phaenomena' (3rd century BCE) + Latin translations by Cicero and Germanicus
 - Similar works by Eratosthenes, Manilius, Hyginus, Cleomedes, Avienus, and others.
- Pre-telescopic star catalogs
 - Ptolemy (2nd century CE)
 - AI-Sūfī (10th century CE)
 - Ulug Beg (15th century CE)
 - Bayer and Brahe (~1600 CE)
- Assyrian texts
 - MUL.APIN (2nd millenium BCE)

- Chinese sources
 - Classical sources (2nd millenium BCE onward)
 - Sima Qian (2nd/1st century BCE)
 - Jin shu (7th century)
- Arabic manuscripts (since the 8th century CE)
- First Nations reports

One tablet of the MUL.APIN British Museum https://www.britishmuseum.org/collection/image/152339001

Historical method – Interpretation

Main problems:

- Obtaining quantitative information from qualitative statements about colour
- Historical differences in the colour ranges associated with a colour term.

i.e. 'red' today may not have the same scope as 'red' 2000 years ago

- Translational inaccuracies for colour terms
- Useful information:
 - Documented comparisons with static objects such as other stars and planets
- Focus of study:
 - Pre-telescopic records show: the colour of Betelgeuse was credibly different from today.
 - Consider Antares for comparison (similar position in CMD).

Results

- Betelgeuse's colour is compared to that of Saturn by G.J.Hyginus (c. 64 BCE AD 17)
 - He wrote in the context of the five naked-eye planets:

"Solis stella ... corpore est magno, coloure autem igneo, similis eius stellae quae est in humero dextro Orionis"

"The Sun's star ... body is large, and colour fiery/burning, similar to the star that is in the right shoulder of Orion"

- Saturn (the Sun's star): B-V = 1.09 (orange) $\rightarrow 4.1\sigma$ from Betelgeuse today !
- Betelgeuse today (B-V=1.78) is even redder than Mars (B-V=1.43), which is consistently reported as 'red' in antiquity.
- Hyginus relied on colour theory of Plato: white (Jupiter, Venus); yellow (Saturn, Mercury); red (Mars)
 - The naked eye can easily distinguish the color of Mars and Saturn!
- Similar, independent report by Simas (China, ca. 100 BCE)
- Antares' colour has been reported as red for at least 3 millennia : e.g. Greek Ant-ares = like Ares (Mars)

Results

Table 3: Betelgeuse and Antarss colour indices from historical reports:									
			Betelgeuse				Antares		
Author	dating	range	Sect.	B-V[mag] sign. (1)	pred. (2)	B-V [mag]	evidence		
Oracle bones	BC 1300	BC 1400-1200	3.3	-	-	≥ 1.43	like fire/Mars		
Book Odes	BC 1000	BC1100-900	3.3	-	-	≥ 1.43	like fire/Mars		
Zuozhuan	BC 600	BC722-468	3.3	-	-	≥ 1.45	Alphard		
Greek	BC 200	BC1000-AD150	3.3	-	-	≥ 1.43	'like Mars'		
Simas	BC 90	BC150-87	3.2.7	0.95 ± 0.35 (3) 2.3σ	1.16	≥ 1.43	like Mars		
Hyginus	AD15	BC 50-AD 17	3.2.1	1.09 ± 0.16 (4) 4.1σ	1.23	-	-		
Germanicus	AD7	BC 5-AD 19	3.2.4	$< 1.59 (\beta \text{ And})$	1.22	≥ 1.59	Mirach		
Manilius	AD 20	AD 10-30	3.2.5	$< 1.84 (lpha { m Sco})$	1.23	-	-		
Cleomedes	AD 60	BC100-AD220	3.2.3	$< 1.48 (lpha { m Tau})$	1.25	≥ 1.48	Aldebaran		
Almagest	AD138	AD 100-170	3.2.2	> 0.80 to 0.97 (α Aur - β Gem) (5)	1.30	≥ 0.89	as Betelgeuse		
Tetrabiblos	AD150	AD 100-170	3.2.2	$< 1.14 (\alpha \text{ Boo}) (5)$	1.31	≥ 1.14	Arcturus		
Hephaistos	AD415	AD 415	3.3	-	-	≥ 1.43	like Mars		
Bedouins	AD 889	AD 700-1000	3.2.8	$\geq 0.80 (\alpha \text{ Aur})$	1.60	≥ 0.80	Capella		
Al-Ṣūfī	AD 964	AD 920-964	3.2.8	> 0.80 to 0.97 ($lpha$ Aur - eta Gem)	1.61	≥ 0.89	as Betelgeuse		
Al-Biruni	AD1000	AD 1000	3.3	-	-	≥ 1.43	like Mars		
Al-Tusi	AD1200	AD 1200	3.3	-	-	≥ 1.43	like Mars		
Ulug Beg	AD1440	AD 1400-1449	3.2.8	> 0.80 to 0.97 ($lpha$ Aur - eta Gem)	1.66	≥ 0.89	as Betelgeuse		
T. Brahe	AD1572/3	AD 1572/3	3.2.8	$> 1.48 (lpha { m Tau})$	1.67	-	-		

Notes: (1) Significance for being different (smaller) than the current value of $B-V=1.78 \pm 0.05$ mag.

(2) Predicted B-V (mag) colour index for Betelgeuse from the lower, best-fit line for Betelgeuse in Fig. 5.

(3) 'yellow', (4) like Saturn.

(5) Upper and lower limit together yield a range of 0.80 to 1.14 mag, or 0.97 ± 0.17 mag (4.6 σ significance).

Results

Betelgeuse: Black Antares: Red

Only 13, 14, 15, 16 M_{\odot} consistent within 1.5 sigma for Betelgeuse considering its CMD position today.

 \rightarrow Determine current age and plot colour index vs. time

MIST models end in 2022 with current colour index: - 1.73, 1.78, 1.83

→ For Betelgeuse, only the 14 Msol track is consistent with historical documents !

 \rightarrow Antares is either 13 Msol on the blue loop, or on the 15/16 Msol track

Conclusions

- The colour of Betelgeuse was significantly different 2 millenia ago, as confirmed by multiple independent reports.
 - Therefore, Betelgeuse only recently crossed the HRD
- Its initial mass was further constrained to 14 Msol.
- Authors also investigate other aspects, including:
 - results for some other stars
 - colour evolution of Betelgeuse during the Great Dimming (2019-2020)
 - possibility of merger history of Betelgeuse
- MIST tracks show that Betelgeuse should have dimmed by about 1 mag during the last 2 millenia → not yet confirmed by historical reports

