

Impact of mass loss on the formation, structure and evolution of Wolf-Rayet stars

The Wolf-Rayet phenomenon in the Universe *Morelia (Mexico), June 2023*

> *Collaborators: Sylvia Ekström, Andreas Sander, and ISSI Team 512

Department of Astronomy University of Geneva Switzerland

Context

• Massive stars are subject to intense mass loss.

45-65% of their initial mass is removed during their lifetimes

• Mass loss is a **major source of uncertainty** in stellar models, but has a large **impact on stellar evolution**.

A wide range of mass loss scenarios must be considered.

Focus of this work: Investigating the effect of main sequence mass loss on the evolution of massive stars. Josiek et al. (in prep.) \rightarrow Stellar evolution models

Models

- Geneva Stellar Evolution Code (**GENEC**)
- Initial masses: 20–120 M_o
- Metallicity: Solar (0.014), LMC (0.006)
- Rotation-free
- 2 **O/B mass loss** prescriptions:

0	Vink et al. (2001) [standard]	Vin01
0	Bestenlehner (2020), calibrated on LMC by Brands et al. 2022	Bes20

• Run from **ZAMS** to the end of central **carbon burning**

Mass loss rates (Main sequence)

Mass lost during the main sequence

Regime Transition Vin01: Bistability jump Bes20: Optically thin/thick winds (Γ_{Edd})

The theoretical Wolf-Rayet star

- Mass loss is closely linked to these criteria ($T_{eff} \& X_{surf}$) by removing surface material)
- Not applicable to non-WR stripped stars (e.g. through binary mass transfer) (e.g. Shenar et al. 2020)
- Spectroscopic classification ≠ Theoretical classification

How is hydrogen (re)distributed inside the star?

Evolution of surface hydrogen

Typical "hydrogen depletion curve"

Evolution of surface hydrogen

"Hydrogen depletion curve" with model data

Time of WR formation

Evolution in the HRD

Joris Josiek

Evolution endpoint

Z = 0.014

Z = 0.006

Final core mass

Timescales/Populations

Z = 0.014

Z = 0.006

Conclusions

There are two distinct regimes for main-sequence mass loss. (According to the two mass loss prescriptions)

2 Main sequence mass loss impacts the stellar structure deeply. Structure of convective zones (hydrogen shell, MS core)

There are two formation channels for single Wolf-Rayet* stars.

Late-formed: $O/B \rightarrow RSG/YSG \rightarrow BSG \rightarrow WNE (\rightarrow WC/WO)$ Early-formed: $O/B \rightarrow WNL \rightarrow WNE \rightarrow WC/WO$

* For theoretical Wolf-Rayet stars!