The Physics of Neutron Stars

Lattimer & Prakash, SCIENCE 304, 536–542 (2004)

Presented by Joris Josiek

Heidelberg, 09.11.2023

The building blocks (A very short review of the Particle Zoo)

QUARK	fundamental particle up, down, strange, charm, top, bottom
LEPTON	fundamental particle electron, muon, tauon neutrinos
HADRON	particle composed of quarks baryons, mesons
BARYON	particle with odd number of quarks uud: proton udd: neutron
MESON	particle with even number quarks π + (ud), π - (ud),

STRONG	attraction between quarks binds atomic nuclei
WEAK	changes flavor of quarks and leptons β decay
EM	attraction between charged particles binds atoms
GRAVITY	attraction between massive particles binds celestial bodies

Neutron stars — A brief introduction

MASS ~1.5 solar masses RADIUS ~12 km DENSITY 5-10 times higher than atomic nuclei

ORIGIN EVOLUTION OF MASSIVE STARS

COMPOSITION mostly neutrons (+exotic particles)

e.g. strangeness-bearing baryons mesons deconfined quarks

TYPES "normal" or "strange quark matter" (SQM)

hadronic exterior surface P, ρ vanish bound by gravity bare quark-matter surface surface P vanishes, but high surface ρ bound by strong force emit mainly in hard X-rays and γ-rays **hypothetical**

Outline

Formation

Formation of Neutron Stars

(1) GRAVITATIONAL COLLAPSE

of a massive star's Fe-Ni core.

- \rightarrow lepton-rich matter
- → compression to nuclear density→ shockwave (accelerated by neutrino pressure) strips the mantle → Supernova

2 PROTO-NEUTRON STAR

rapidly shrinks due to diminishing neutrino pressure.

→ neutrinos escape within ~10s (obs. SN 1987A) Black Hole formation channels

(I) Mass falls through the shock before lift-off. ACCRETION

(II) Collapse once electron and neutrino pressure is removed. DELEPTONIZATION

(3) **CORE HEATING** due to electron-proton combination. $\rightarrow T \sim 10^{11} \text{ K}$ \rightarrow duration: ~10-20s

due to steady neutrino emission. → The star becomes transparent to neutrinos after ~50s NEUTRON STAR

Formation of Neutron Stars

(1) GRAVITATIONAL COLLAPSE

of a massive star's Fe-Ni core.

- \rightarrow lepton-rich matter
- → compression to nuclear density → shockwave (accelerated by neutrino pressure) strips the mantle → Supernova

2 PROTO-NEUTRON STAR

rapidly shrinks due to diminishing neutrino pressure. → neutrinos escape within ~10s

(obs. SN 1987A)

Mass limits MAX 3 M_o (theoretical) 1.44 M_o (observed) MIN 0.1 M_o (theoretical) 1 M_o (evolution)

(3) **CORE HEATING** due to electron-proton combination. $\rightarrow T \sim 10^{11} \text{ K}$ \rightarrow duration: ~10-20s

due to steady neutrino emission. → The star becomes transparent to neutrinos after ~50s NEUTRON STAR Black Hole formation channels

(I) Mass falls through the shock before lift-off. ACCRETION

(II) Collapse once electron and neutrino pressure is removed. DELEPTONIZATION

Structure of Neutron Stars

Mass continuity

$$\frac{\mathrm{d}m(r)}{\mathrm{d}r} = 4\pi\rho r^2$$

Hydrostatic equilibrium

$$\frac{dP}{dr} = \frac{Gm(r)\rho}{r^{2}} \qquad \frac{dP}{dr} = -\frac{G(m(r) + 4\pi r^{3}P/c^{2})(\rho + P/c^{2})}{r(r - 2Gm(r)/c^{2})}$$
Equation of state
$$P = P(\rho, T)$$
UNKNOWNS $m(r), P(r), \rho(r)$
ASSUMPTION EOS
SOLUTION NUMERICAL *M*-*R* relation

Structure of Neutron Stars

Lattimer & Prakash (2004)

Özel & Freire (2016)

EQUATIONS OF STATE				
Symbol	Reference	Approach	Composition	
FP	Friedman & Pandharipande (1981)	Variational	np	
PS	Pandharipande & Smith (1975)	Potential	nn ⁰	
WFF(1-3)	Wiringa, Fiks & Fabrocine (1988)	Variational	np	
AP(1-4)	Akmal & Pandharipande (1997)	Variational	np	
MS(1-3)	Müller & Serot (1996)	Field theoretical	np	
MPA(1-2)	Müther, Prakash, & Ainsworth (1987)	Dirac-Brueckner HF	np	
ENG	Engvik et al. (1996)	Dirac-Brueckner HF	np	
PAL(1-6)	Prakash et al. (1988)	Schematic potential	np	
GM(1-3)	Glendenning & Moszkowski (1991)	Field theoretical	npH	
GS(1-2)	Glendenning & Schaffner-Bielich (1999)	Field theoretical	npK	
PCL(1-2)	Prakash, Cooke, & Lattimer (1995)	Field theoretical	npHQ	
SQM(1-3)	Prakash et al. (1995)	Quark matter	Q(u, d, s)	

NOTE.—"Approach" refers to the underlying theoretical technique. "Composition" refers to strongly interacting components (n = neutron, p = proton, H = hyperon, K = kaon, Q = quark); all models include leptonic contributions.

Lattimer & Prakash (2001)

The quest for the Equation of State

- The EOS inside neutron stars is non-trivial \rightarrow important for fundamental physics
- Conditions are difficult to reproduce in the laboratory.
 - Nuclear matter is about 50% neutrons, for NS this is closer to 99% neutrons
- Large uncertainties:
 - Factor 6 of variation in pressure at nuclear density for neutron-dominated matter!
 - Leads to almost 50% uncertainty in predictions of radii.
- M–R relation could be constrained from rotation
 - Leads to better constraints on the EOS

Evolution (cooling)

- Heat transport into the interior by electron conduction
 - Neutrino losses from interior.
- After 10~100 years, the neutron star becomes isothermal
- Photoemission in X-rays ($T_{eff} \sim 1\% T_{interior}$)
- Neutrino emission dominates for about 300 000 years
- Urca-processes:
 - Direct: $n \rightarrow p + e^- + \overline{v}_e \mid p \rightarrow n + e^+ + v_e$
 - Modified: $n + (n,p) \rightarrow p + (n,p) + e^- + \overline{v}_e$ | $p + (n,p) \rightarrow n + (n,p) + e^+ + v_e$ (conserve linear momentum)
 - Direct or modified process??

Evolution (cooling)

- Heat transport into the interior by electron conduction
 - Neutrino losses from interior.
- After 10~100 years, the neutron star becomes isothermal
- Photoemission in X-rays $(T_{eff} \sim 1\% T_{interior})$
- Neutrino emission dominates for about 300 000 years
- Urca-processes:
 - $\circ \quad \text{Direct: } n \rightarrow p + e^{-} + \overline{\nu}_{e} \quad \left| \quad p \rightarrow n + e^{+} + \nu_{e} \right|$
 - $\circ \quad \text{Modified:} \quad n + (n,p) \rightarrow p + (n,p) + e^{-} + \overline{v}_{e} \quad \Big| \quad p + (n,p) \rightarrow n + (n,p) + e^{+} + v_{e} \quad (\text{conserve linear momentum})$
 - Direct or modified process??
- Central quantity: symmetry energy function S_v(n):

 $E(n, x) = E(n, x=0.5) + S_v(n) (1-2x)^2$

Evolution (cooling)

Observations

<u>MASS</u>

most accurate from pulsars in binaries

can determine *both* masses in the binary due to relativistic effects

(e.g. Shapiro time delay)

also from accretion in X-ray binaries

THERMAL EMISSION

mostly overshadowed by non-thermal emission (magnetic effects)

a few observations exist, probably at around 300 000 – 1 000 000 K

R is difficult to determine, since $F = \sigma T_{eff}^{4} (R/d)^{2}$ must be corrected by redshift, which is itself M and R dependent.

Neutron stars are not black bodies!

optical emission deficit observed (compared to X-ray)

consistent with heavy-ion atmospheres, but narrow spectral features are absent...

Future prospects

- Accelerator experiments to determine nuclear physics (e.g. Lattimer 2023)
- Neutrino observations of supernovae
- Gravitational wave detections
 - Multimessenger detection of GW170817 (LIGO coll. et al. 2017, 2021)
- Detailed models of cooling mechanisms (e.g. Sales et al. 2020)
- Signatures of chemical composition (e.g. Levan et al. 2023)

Questions