
Joris Josiek // University of Heidelberg Fundamentals of Radiative Transfer in Expanding Media

Fundamentals of Radiative Transfer in Expanding Media

Joris Josiek
ZAH/ARI, University of Heidelberg

Lectures on Massive Stars Series 2
Stellar Winds in Massive Stars

supervised by 
Jo Puls LMU Munich)

17 April 2025



Joris Josiek // University of Heidelberg Fundamentals of Radiative Transfer in Expanding Media / 25

1 Emergent spectra 2 Wind driving

Radiation in hot stars interacts with matter in complex ways.

Need to understand radiative transfer in order to study:

→ Analysis of stellar atmospheres

Synthetic spectrum of a 
WNh star computed with 
PoWR

2



Joris Josiek // University of Heidelberg Fundamentals of Radiative Transfer in Expanding Media / 25

Radiative transfer – the basics
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Specific intensity

- Energy transported by radiation per (projected) area, per solid angle, per time, per 
frequency.

- Can generally depend on position, direction, time and frequency.

Unlike flux, specific intensity does not dilute over distance.

→ Only affected by interaction with matter → Radiative Transfer Equation
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Radiative Transfer Equation RTE

Analytical solutions only for very special cases

Integrating full RTE is numerically expensive; accuracy depends on method

change in intensity emission absorption—=
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Spherical symmetry

r

θ
z

p

Propagation of light: 

Stationary RTE in spherical geometry

Stationary RTE in p-z geometry
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Common definitions

Optical depth

Source function
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Profile function

Opacity for one spectral line

opacity total line opacity
(from atomic data)

profile 
functionϕ(ν)

ν

Profile width Δν due to thermal motion (and random motion)

ν0
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?

 Δν ~ vth

Intrinsic line profile Emergent line profile

 Δν ~ vwind~ 10 km/s ~ 1000 km/s
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Formal integral

Integrating the RTE yields the “formal solutionˮ for I𝜈(r)

Problems with numerical integration:

- Unknown source function?
- Highly resolved grids in space and frequency required (narrow lines vs. fast winds)
- Opacities and emissivities are non isotropic (due to Doppler-shift), and depend on r 

and µ.

→ Large errors when resolution not sufficient
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Sobolev Theory
Sobolev 1960
Rybicki & Hummer 1978
Puls, Canary Winter-School 2017
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The Resonance Zone
Consider a spectral line with restframe wavelength

A photon with restframe wavelength        can only be 
absorbed in the region where the line center is 
Doppler-shifted to within a few thermal widths of the photon. 
→ Resonance Zone

photon 
frequency

shifted 
central line 
frequency

3x thermal 
line width

Radial velocity projected in the line of sight

vshift / v∞
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* This figure was an animated gif in the original presentation.
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The Resonance Zone

Assume the resonance zone is “narrowˮ 
→ macrovariables (opacity, source function, v gradient) are (almost) constant
→ there is no interaction in most of the medium (if continuum is weak)
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* This figure was an animated gif in the original presentation.
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The Sobolev optical depth
Observed photon 
frequency

Photon frequency in 
the comoving frame

Impact 
parameter

Line 
opacity

Integrate over photon 
path

Profile 
function

Local Doppler-shift

Transform integration variable from         to               :

Geometry of 
coordinate systems

Position in polar (r,µ) 
coordinates
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The Sobolev optical depth

Sobolev approximation: macrovariables are constant in the resonance zone!

Evaluate in the resonance zone 
(for each ν and p)

Φ

νCMF

Integrated line profile (from blue to red)
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(including dv/dr)
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Formal solution with Sobolev approximation
For each ν and p: ① Find the location of the RZ, 

② Compute the Sobolev optical depth. 

Then:

Before passing the RZ

After passing the RZ

The specific intensity is calculated locally!

General:

Φ

νCMF

̃ν

Integrated line profile
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Profile-weighted mean intensity

Needed for rate equations and computing 
radiative acceleration.

Only photons with a comoving frequency close to the line center contribute!

Change coordinate system (p,z → r,µ) and integrate over 
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From previous slide:
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Profile-weighted mean intensity

This is completely local
(i.e. no information is needed from any other part of the star)

Optically thick lines:

Optically thin lines:
from 1st-order expansion of τS
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Mean intensity and Eddington flux

→ rate equations

→ radiative acceleration
Independent of source function in the Sobolev approximation 
(since only µ² plays a role and thus the second term in I̅ is 
fore-aft symmetrical)
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***

*** S is mostly independent of µ since the angle-dependence is in the profile function which is usually the same for 
emissivity and opacity and therefore cancels out when considering S = η/χ.
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When is the Sobolev approximation valid?

When macroscopic variables are constant in the RZ.

This is the case in fast-wind regimes: winds above the thermal point and SN remnants

It is not appropriate for lines formed below the sonic point, where 
(regions where v0 would be inside the RZ, which then includes the entire stellar interior)

Also not appropriate for regions with high v curvature (where dv/dr ≠ const.)
e.g. at the sonic point

Sobolev length = width of the RZScale-height of variable X
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Extensions of Sobolev theory

● Continuum    Hummer & Rybicki 1985

● Gradients of S    Puls & Hummer 1988

● Multiple lines    Puls 1987

● “Sobolev with Exact Integrationˮ SEI    Hamann 1981, Lamers et al. 1987

Compute         in Sobolev Source function rate equations

Exact formal integral for
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The comoving frame CMF) method
Radiative transfer equation:

Simple transformation into CMF with                             and 

geometrical factor

Lucy 1971, 
Mihalas et al. 1975, 
Hamann 1985

(v ≪ c)
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The comoving frame CMF) method

Numerical integration schemes: implicit Mihalas+1975 or semi-implicit Hamann 1981

ADVANTAGES

- Only a small range of νCMF around the 
line center needs to be considered

- η and χ are isotropic in the CMF

- J̅ and H̅ donʼt need to be transformed 
into the observerʼs frame

POTENTIAL ISSUES

- Only covers the non-relativistic limit v≪c

- Boundary conditions in space and initial 
conditions in frequency required.

From this equation, the Sobolev approximation can be exactly obtained by neglecting      –term.
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Sobolev vs. CMF

Hamann 1981

Puls & Hummer 1988

Emergent line profile
Source function Radiative acceleration

CMF

Sobolev

Sobolev with Continuum

source function dip
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Conclusions

Sobolev theory allows for fast solution of radiative transfer for wind lines (above the 
thermal/sonic point or if dv/dr = const.)

Concept of the “Resonance Zoneˮ reduces integrals to a local calculation.

→ Particularly powerful when including the extensions (continuum, multi-line, etc…)

For more general applications (e.g. quasi-photospheric lines), CMF is used.

25


