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Radiation in hot stars interacts with matter in complex ways.

Need to understand radiative transfer in order to study:

1 Emergent spectra > Wind driving

- Analysis of stellar atmospheres
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Radiative transfer — the basics
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Specific intensity

dE = 1,(r,n,t)dAdQ dtdv

- Energy transported by radiation per (projected) area, per solid angle, per time, per
frequency.
- Can generally depend on position, direction, time and frequency.

Unlike flux, specific intensity does not dilute over distance.

- Only affected by interaction with matter - Radiative Transfer Equation
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Radiative Transfer Equation (RTE)

(l% o v) IV(r7 n, t) - nV(ra n, t) - X,/(I', Il,t)],,(I', n’t)
C

change in intensity = emission — absorption

Analytical solutions only for very special cases

Integrating full RTE is numerically expensive; accuracy depends on method
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Spherical symmetry

p

[ := cos 6
r=(p,z)=(rsinf,rcosf) = (r\/1 — p?,ru)
/// B Propagation of light: 11 = //
0 1—u*o0
(g + 250 ) L) = o) = ol il
Stationary RTE in spherical geometry
dl,(p, z
% =n.(p, 2) — Xu(p, 2) 1. (P, 2)

Stationary RTE in p-z geometry
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Common definitions

Optical depth
o
T,(p, 2) :/ Yo (p, 2") dz’

Source function

S, = U
Xv
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Profile function

Opacity for one spectral line
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XV(r) — X(r)¢(V, I') X=/xydu /¢(u)dz/=1

/

opacity total line opacity profile
(from atomic data) function

Profile width Av due to thermal motion (and random motion)

Uth
Av = yg—
c
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Intrinsic line profile

AV ~ Vin
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~ 10 km/s

\ 4
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Emergent line profile

Av ~ VW nd

~ 1000 km/s
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Formal integral

Integrating the RTE yields the “formal solution” for / (r)

70
L(n) = Lim)e ™™+ [ (e ar,

Problems with numerical integration:

- Unknown source function?

- Highly resolved grids in space and frequency required (narrow lines vs. fast winds)

- Opacities and emissivities are non isotropic (due to Doppler-shift), and depend on r
and (.

- Large errors when resolution not sufficient
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Sobolev Theory

Sobolev (1960)
Rybicki & Hummer (1978)
Puls, Canary Winter-School (2017)

Fundamentals of Radiative Transfer in Expanding Media

1/25




The Resonance Zone

* This figure was an animated gif in the original presentation.
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Consider a spectral line with restframe wavelength 1/

A photon with restframe wavelength 1/ can only be
absorbed in the region where the line center is
Doppler-shifted to within a few thermal widths of the photon.
- Resonance Zone

Radial velocity projected in the line of sight
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The Resonance Zone

* This figure was an animated gif in the original presentation.
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Assume the resonance zone is "narrow”

- macrovariables (opacity, source function, v gradient) are (almost) constant
- there is no interaction in most of the medium (if continuum is weak)
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The Sobolev optical depth

Observed photon

Photon frequency in
frequency

the comoving frame

rsp) = [ X(02) olvais(v:p.2) d
;LT \

Impact Line
parameter opacity

Integrate over photon
path

Profile
function

Transform integration variable from dz to dveyg:

dvemr v

A
dz c('u

Geometry of
coordinate systems

u(p,
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r(p, z) =
7) =
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Position in polar (r,u)
coordinates

vorte (v ) = Ry

%(_J

Local Doppler-shift

\V]

p?+ 2z
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The Sobolev optical depth

Integrated line profile (from blue to red)

A
r N\

X(», 2) X(p, 2)
Ts(v,p) = / » v v d(vomr)dvenr = > " p ¢(vemr )dvemr
g+ =)y g+ =)y

\ J

RZ(v,p)

Sobolev approximation: macrovariables are constant in the resonance zone!
(including dv/dr)

TS(Vap) — =

T Evaluate in the resonance zone
(for each v and p)
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Formal solution with Sobolev approximation

For each v and p: @ Find the location of the RZ,
@ Compute the Sobolev optical depth.
Then:

Before passing the RZ: [,,(p, Z) = L/(p, Zback)

After passing the RZ: | I,,(p, 2) = 1,(p, Zback) e~ Ts(RZ) Srz(1 — 6-’7’5(RZ))

General: ]V(p’ Z) - Iy(]?, Zback) ¢~ Ts(RZ)®(vomr) T SRZ(l _ 6—7‘5(RZ)‘I)(I/CMF))

Integrated line profile
@

The specific intensity is calculated |ocally! —\V

\ VCMF

Joris Josiek // University of Heidelberg Fundamentals of Radiative Transfer in Expanding Media

16725




Profile-weighted mean intensity

]V(p7 Z) — [V(p, Zback) e_TS(RZ)(I)(VCMF) _I_ SRZ(l - e—Ts(RZ)(I)(yCMF))

I(p, 2)

/IV(Z% z) ¢(vomr) dvemr

Needed for rate equations and computing
radiative acceleration.

Only photons with a comoving frequency close to the line center contribute!

Change coordinate system (p,z = r,u)
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and integrate over d® = —¢(vomr) dvour
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Profile-weighted mean intensity

]__ [ 1 _ 6—7’5(7’,,&) S 1 1 — e_TS(r>/*L)
(Ta :u) - back(p) 7'5(7“, ,U) + (T) ( o TS(T, /J,) )

This is completely local
(i.e. no information is needed from any other part of the star)

Optically thick lines: I(r) = S(r)
from 1st-order expansion of 7
Optically thin lines: I(r) = Iy (p)

Joris Josiek // University of Heidelberg Fundamentals of Radiative Transfer in Expanding Media 18 / 25




Mean intensity and Eddington flux

_ 1 — 6—7’5(7’,,&)

R

1 — e~ 7s(ru)
+ S(r (1 — )
( ) TS(Tﬁ /J')
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*** S is mostly independent of u since the angle-dependence is in the profile function which is usually the same for
emissivity and opacity and therefore cancels out when considering S = n/x.

— rate equations

- radiative acceleration

Independent of source function in the Sobolev approximation
(since only u? plays a role and thus the second term in Tis
fore-aft symmetrical)
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When is the Sobolev approximation valid?

When macroscopic variables are constant in the RZ.

X Vth }
Scale-height of variable X > Sobolev length = width of the RZ
0 { dX/dr ~ dv/dr

This is the case in fast-wind regimes: winds above the thermal point and SN remnants

It is not appropriate for lines formed below the sonic point, where v < vy,

(regions where v=0 would be inside the RZ, which then includes the entire stellar interior)

Also not appropriate for regions with high v curvature (where dv/dr # const.)
e.g. at the sonic point
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Extensions of Sobolev theory

e Continuum  Hummer & Rybicki (1985)
e Gradients of S Puls & Hummer (1988)
e Multiple lines  Puls (1987)

e "Sobolev with Exact Integration” (SEI)  Hamann (1981), Lamers et al. (1987)

rate equations

Compute ] in Sobolev Source function S

T Exact formal integral for ]V
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Lucy (1971),

The comoving frame (CMF) method o eio co7s)

Hamann (1985)

Radiative transfer equation:

AL (e (1= 2)) o (-2 2

. . . . o jeay i B 3 81/CMF 0
Simple transformation into CMF with vemr = v (1 — 7) and 3, - . 9z |, Bvomr .
geometrical factor @ //lei (1 //‘11:
oI+ v oI+
== _ YouxQ = n(r,vemr) — X(r, vomr) I+ (v < ¢)
0z C al/CMF
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The comoving frame (CMF) method

oI+ oI+
== _ vour@ = n(r, vomr) — x(r, vomr) T

0z ¢ Ovemr
Numerical integration schemes: implicit or semi-implicit
ADVANTAGES POTENTIAL ISSUES
- Only a small range of Ve @round the - Only covers the non-relativistic limit v<c

line center needs to be considered - Boundary conditions in space and initial

n and x are isotropic in the CMF conditions in frequency required.

Jand H don't need to be transformed
into the observer's frame

From this equation, the Sobolev approximation can be exactly obtained by neglecting %—term.
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Sobolev vs. CMF

source function dip

Emergent line profile

Source function Radiative acceleration
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Fig. 2. Emergent flux profiles for the parameters k,=10, =0,

B=1/2. The Sobolev result is labelled “S”, the comoving-frame —— CMF
results by their parameter vy/v,, =0.1, 0.2 or 0.3, respectively Puls & Hummer (,] 98 8)

Hamann (1981)

Joris Josiek // University of Heidelberg Fundamentals of Radiative Transfer in Expanding Media

2425




Conclusions

Sobolev theory allows for fast solution of radiative transfer for wind lines (above the
thermal/sonic point or if dv/dr = const.)

Concept of the “Resonance Zone” reduces integrals to a local calculation.

- Particularly powerful when including the extensions (continuum, multi-line, etc...)

For more general applications (e.g. quasi-photospheric lines), CMF is used.
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