Jury members Sylvia Ekström (supervisor) Anne Verhamme Eoin Farrell

Winds of Massive Stars

A numerical investigation of the effects of mass loss on the evolution of massive stars

M.Sc. Defense

Joris Josiek

Why study massive stars?

- Rare in the present universe
- High luminosity
- Production of heavy elements
- Strong feedback (e.g. Winds)

A massive star ejects

45–65%
of its own mass during its life.

WR 124 imaged by the Hubble Space Telescope Credit: NASA/ESA

Outline

Results

What do the models predict? What can we learn from the results?

Context

How do massive stars evolve? What do we want to investigate?

Discussion

What is the impact, what are the limitations? What further work could be done?

Methods

2

How do we model stellar evolution? What are the key physical ingredients?

Context The Evolution of Massive Stars

Collapsing Cloud of Gas

Increasing density, temperature, pressure

O/B

Core Helium Burning -

Helium fuses to carbon in the core Hydrogen fuses to helium in a shell **0.2–1 Million Years**

> Carbon burning Neon burning Oxygen burning Silicon burning

2 000 years 6 months 1 year 2 weeks

Core contracts after running out of fuel

Long period of stable fusion of hydrogen to helium in the core

core temperature increases envelope inflates

2–10 Million Years

Main Sequence

Ignition of Nuclear Fusion in the Core at around 10⁶ K

RSG

Collapsing Cloud of Gas

Increasing density, temperature, pressure

Ignition of Nuclear Fusion in the Core at around 10⁶ K

Main Sequence

Long period of stable fusion of hydrogen to helium in the core **2–10 Million Years**

Core contracts after running out of fuel

core temperature increases envelope inflates

Core Helium Burning

Helium fuses to carbon in the core Hydrogen fuses to helium in a shell **0.2–1 Million Years** Carbon burning Neon burning Oxygen burning Silicon burning 2 000 years 6 months 1 year 2 weeks

7

H envelope / H ejecta -

He shell / He ejecta

C+O core -

Ne+Mg rich center

Stellar structure at the end of central carbon burning

Effects of mass loss: (1) Surface temperature increases, (2) Surface metal-abundance increases.

Method Modeling stellar evolution

Mass loss

Thermodynamics

Radiation

Stellar structure and evolution model

Gravity

Diffusion

Nuclear reactions

Need to describe the stellar structure and to describe all the relevant physics in an applicable way!

11

The Geneva stellar evolution code (GENEC)

1) Solving the stellar structure

A star is divided into around **1000 layers**.

Each layer has local properties, e.g. temperature, chemical composition, etc.

Physical equations determine how properties change from layer to layer.

The algorithm finds a stable solution to the equations.

The Geneva stellar evolution code (GENEC)1) Solving the stellar structure (1 dimension)2) Making the structure evolve

The user specifies the initial **global properties**, e.g. mass, chemical composition, rotation rate.

The algorithm computes the stable stellar structure.

Changes are applied for a small timestep,

- Chemical structure changes (e.g. nuclear reactions).
- Mass decreases due to stellar winds.

The Geneva stellar evolution code (GENEC)

2) Making the structure evolve

The user specifies the initial **global properties**, e.g. mass, chemical composition, rotation rate.

The algorithm computes the stable stellar structure.

Changes are applied for a small timestep,

- Chemical structure changes (e.g. nuclear reactions).
- Mass decreases due to stellar winds.

Mass loss in stellar models

• Too complex to implement from first principles \rightarrow Use **prescriptions**.

$$\frac{\mathrm{d}M}{\mathrm{d}t} = f(L, T_{\mathrm{eff}}, M, X_{\mathrm{surf}}, ...)$$

f ... function derived theoretically, numerically, or empirically

Mass loss physics depends on evolutionary stage → Multiple prescriptions

- Prescriptions have two components:
 - Mass loss rate equation (as above)
 - Validity domain

Mass loss in stellar models

 Project goal: compute stellar evolution models with different mass loss prescriptions and compare the results.

Vin01	Vink et al. 2001	Fit on		
Bjo22	Björklund et al. 2022	wind models		
Bes20	Bestenlehner 2020	Theoretical model		

Ì			
	Cro01	Crowther 2001	
			Observational
-			fit
	Bea20	Beasor et al. 2020	

Mass loss of red supergiants (RSG)

Mass loss of hot stars (O/B type)

Grid parameters

Initial masses:

20, 25, 30, 40, 50, 60, 66, 73, 80, 85, 95, 105, 120 ${
m M}_{\odot}$

Rotation:

Metallicity:

Solar (Z=0.014)

O/B mass loss:

Vin01, Bjo22, Bes20

RSG mass loss:

Cro01, Bea20

Results What do the models say?

Characterizing the mass loss prescriptions

Bes20 is approx. **10x lower** than **Vin01** across the entire mass range.

Bjo22 is only valid for the lower mass range.

Time-averaged mass loss rate during the main sequence.

Characterizing the mass loss prescriptions

Observations of RSGs at such high masses are extremely rare.

Time-averaged mass loss rate during the RSG phase.

Main sequence evolution

Two mass loss regimes.

Mass at the end of the main sequence (TAMS)

Main sequence evolution

Mass-luminosity relation at the end of the main sequence

Main sequence evolution

Main sequence evolution in the Hertzsprung-Russell Diagram (HRD)

After the Main Sequence

He

Main sequence mass loss

Low

High

End of the MS H shell ignition Convective mixing

(Joris, take a drink!)

Large

H-rich shell

Small

H-poor shell

Surface hydrogen depletion

Schematic for the evolution of surface hydrogen (arbitrary units)

Typical track of the hydrogen depletion curve

Surface hydrogen depletion

Hydrogen depletion curve for the 60 solar mass models

Wolf-Rayet stars

Spectral type with strong and broad emission lines; signatures of optically thick wind **Spectroscopic Definition**

Hot: T_{eff} > 10 000 K Hydrogen-poor: X_s < 0.3 **Theoretical Definition**

Nitrogen lines (hotter)	WNL	X _s > 10 ⁻⁵	N < C	Τ _{eff} < 10 ^{5.25} Κ
Nitrogen lines (cooler)	WNE	X _s < 10 ⁻⁵		
Carbon lines	wc		C > N	
Oxygen lines	WO			T _{eff} > 10 ^{5.25} K

Formation of Wolf-Rayet stars

* $\leq 40M_{\odot}$: Only models with strong RSG winds become WR

Properties at the onset of the WR phase

Formation of Wolf-Rayet stars

Late-formed

 $* \leq 40M_{\odot}$: Only models with strong RSG winds become WR

Properties at the onset of the WR phase

Evolution of Wolf-Rayet stars

60 solar mass evolution in the HRD

Evolutionary paths for post-MS massive stars

Low Mass Loss Regime

RSG/YSG \rightarrow Surface temp. incr. with mass loss \rightarrow BSG \rightarrow H-rich shell removed \rightarrow H-depleted WR star

High MS Mass Loss Regime

Short YSG \rightarrow Surface temp. incr. with mass loss \rightarrow H-poor shell exposed \rightarrow H-poor WR star

During the WR phase: stripping of layers, very hot surface (> 100 000 K)

Evolutionary endpoint

Stellar Populations

Discussion What have we learned?

1 There are two distinct regimes for main-sequence mass loss.

(According to two of the mass loss prescriptions)

2 Main sequence mass loss impacts the stellar structure deeply.

Structure of **convective zones** (hydrogen shell, MS core)

3 There are two formation channels for Wolf-Rayet* stars. Late-formed: $O/B \rightarrow RSG/YSG \rightarrow BSG \rightarrow WNE (\rightarrow WC/WO)$

Early-formed: $O/B \rightarrow WNL \rightarrow WNE \rightarrow WC/WO$

* For theoretical Wolf-Rayet stars!

Impact and limitations

- Can predict complete evolution just from MS mass loss.
- Insights into evolution of massive stars in the single-star, non-rotating picture.
- Investigated mass loss rates cover a wide range.
- No judgement of mass loss prescriptions possible (lack of observable criteria)
- No evaluation of the effects of **metallicity**, **binarity** and **rotation**.

1 There are two distinct regimes for main-sequence mass loss.

(According to two of the mass loss prescriptions)

2 Main sequence mass loss impacts the stellar structure deeply.

Structure of **convective zones** (hydrogen shell, MS core)

3 There are two formation channels for Wolf-Rayet* stars. Late-formed: $O/B \rightarrow RSG/YSG \rightarrow BSG \rightarrow WNE (\rightarrow WC/WO)$

Early-formed: $O/B \rightarrow WNL \rightarrow WNE \rightarrow WC/WO$

* For theoretical Wolf-Rayet stars!