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Why"study mas‘SiVé-stars? e

. Rare in the present universe | L i
e High Iumlnosrty ¥ e

o Produetlon of heavy elements i L R
L Bl e 3 &::a ; ~ d #F o .
e Strong feedback (e.g.‘A L L = 9

A massive star ejects

45-65%

of its ommasi_ durlng its life. .

b

WR 124 imaged by the Hubble Space Telescope
Credit: NASA/ESA



Outling ' Sasii i g

Discussion
What is the impact, what are the . -
limitations? o

~ What further.work could be done?

* - Results

What do the models predict? 3 ‘ - ;
What can we learn from the results? e
Methods

How do we model stellar evolution? -
What are the key physical ingredients?

Context
How do massive stars evolve? .
What do we want to investigate?




Context
The Evolution of Massive Stars



Collapsmg Cloud of Gas

Inoreasrng oIenS|ty, temperature pressure "
: E » e

Gl e | Ign|t|on of Nuclear Fusion in the
‘ ) ~ - Core .
at around 108 K

-Maln Sequence e
Long penod of stable fusron of hydrogen to helrum in the core
~ 2-10 Million Years ’ . .

Core Hehum Burn|ng <— . Core cdntracts after running out of

core temperature increases
Helium fuses to carbon in the core envelope e

Hydrogen fuses to helium in a shell

'0.2-1 Million Years ‘ g
Carbon buriffig- 2 000/yEars ™ &=
Neon-burhing 6 months
Oxygen burning 1 year
Silicon burning 2 weeks

-




Collapsmg Cloud of Gas

Increasrng denS|ty, temperature pressure 3
: k3 , : ’

~ Ignition of Nuclear Fusion in the Core
ataroundtO6K e -

‘Maln Sequence

‘Long period of stable fusron of hydrogen to helrum in the core - e
2-10 Million Years | _ \ :

Core contracts after running out of fueI
core temperature increases
envelope inflates

Core Hellumrp ing : . Carbon burning 2000 years

Helium fuses to carbon in the core Neon burning 6 months

Hydrogen fuses to helium in a shell Oxygen burning 1 year
0.2-1 Million Years Silicon burning 2 weeks



Wolf-Rayet Star

Hot Main S_équenceStar

Red supergiant

.

Yellow -Asupekrgifant

- Blue supergiant




" _ He shell / He ejecta ~_
o C+O core » \

Ne+Mg rich center

. < % 2, » »
Stellar structure at the end of central carbon burning

Effects of mass loss: (1) Surface temperature increases, (2) Surface metal-abundance increases.




\V/[sliglele
Modeling stellar evolution
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Hydrodynamics

Radiation

Nuclear
reactions

Need to

Convection

Stellar structure

Mass loss

Thermodynamics

Gravity

and evolution

and to

model

Diffusion

in an applicable way!
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The Geneva stellar evolution co‘de (GENEC)
1) Solving the stellar structure

A star s divided into around 1000.layers.

- Each layer has [oYeX:1} properties, e.gﬁ temperature, chemiCal composition, etc.

Physical equations determine how properties change from layer to layer.

The algorithm Jinds ‘@'stable solution to the equations.
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The Geneva stellar evolutlon code (GENEC)

1) Solvmg the steIIar structure (1 dlmensmn)

‘2) Maklng the structure evolve ‘

The user speC|f|es the |n|t|a| global propertles e. g mass chemlcal composmon
rotatlon rate. . - |

~ The algorithm ccmpUtes the stable.stellar structure. e ;
Changes are applied for a small timestep, |

x-30 000
e Chemical structure changes (e.g. nuclear reactions).
e Mass decreases dué to stellar winds. ’
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The Geneva stellar evolution code (GENEC)

| 2) Making the .s“tr‘ucture evolve

The user specn‘les the |n|t|a| global propertles e. g mass chemlcal composmon
rotatlon rate: & \ | o B s |
~ The algorithm COmpUteS the stable.stella’r structure. e ;

Changes are applied for a small timestep, |

x-30 000
e Chemical structure changes (e.g. nuclear reactions).
e Mass decreases dué to stellar winds. ’
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Mass loss in stellar models
K Too complex to |mplement from ﬂrst prlncuoles — U prescrlptlons

M -

i AL Teff,/w xsurf,...)

f ... function denv_ed thedretically, numerically, or‘empi"rically

e Mass loss physics depends on evolutionary stage — I\/Iultiple prescriptions
e Prescriptions have twe. components

o Mass loss rate equation (as above) . -
o Validity domain :

15



Mass loss in stellar models

° Project goal: compute stellar evolution models with different mass loss

prescriptions and compare the results. _
Vin01 . .| Vink et al. 2001 | Eiton: Cro01: | Crowther 2001 |
. o i o . Observational
= e hydrodynamical fit
Bjo22 = | Bjérkiund et al. 2022 | Wind models Bea20 | Beasor et al. 2020
Bes20 Bestenlehner 2020 'Ir;]hoegerletlcal Mass loss of red supergiants (RSG)

Mass loss of hot stars (O/B type)
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Grid parameters -
Initial masses: g | )

20, 25, 30, 40, 50; 60, 66, 73, 80, 85, 95, 105, 120M,
Ro;tation:. e e
ol
I\/Iet‘aillic-ity.: - ,
~ Solar (Z:0.014) -
| O/B mass loss: |

Vin01, Bjo22, Bes2b

RSG mass loss: «ﬁ“f > }b > Tt : .

Cro01, Bea20



Results
What do the models say?

18



Characterizing the mass loss prescriptions

Bes20 ” | -
. ] a7 | Bes20 is.approx. than
Vin01 1 L o _g— 1 N

Bjo22 is only valid for the lower
mass range.

60 80
A'[illi /1’7\[ D

Time-averaged mass loss rate during the main sequence.

Vin01 across the entire mass range.
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Characterizing the mass loss prescriptions

Observations of RSGs at such
high masses are extremely rare.

Cro01
Bea20

J\'[illi /1’7\[ D)

Time-averaged mass loss rate during the RSG phase.
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Main sequence evolution

o Bes20
v  Bjo22
Vin01

~
=
SIS
£
=
=
g
= 4

80
M /M

Mass at the end of the main sequence (TAMS)

Two mass loss regimes.
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Main sequence evolution

Bes20
Bjo22
Vin01

Mass-luminosity relation at the end of the main sequence
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Main sequence evolution

log (]-lef {K] )

Main sequence evolution in the Hertzsprung-Russell Diagram (HRD)
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After the Main Sequence
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Large
H-rich
shell

Small
H-poor
shell

End of the MS H shell ignition Convective mixing

Low

Main sequence
IUESSYONS

High

(Joris, take a drink!)



Surface hydrogen depletion

Schematic for the evolution of surface hydrogen (arbitrary units)
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Mass lost

Typical track of the hydrogen depletion curve
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Surface hydrogen depletion
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Hydrogen depletion curve for the 60 solar mass models

4

Low MS mass loss

High MS mass-loss
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Spec‘tral tybe with strong and -

broad emission lines; signatures.

of optically thick wind .~
Spectroscopic Definition -

Wolf-Rayet stars

#HHot T > 10000K
| Hydrogen-poor: X < 0.3
Theoretical Definition .

Nitrogen lines (hotter) WNL X =10
| : ’ N<C
Nitrogen lines (cooler) MANE
?Qﬂé = ’ﬁg‘ : -5 ¢
Carbon lines ~=WC X ool
C>N
Oxygen lines wo

1L 2072

T
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Formation of Wolf-Rayet stars

= “End of
He-burning

= Gap

* =40M . : Only models with strong RSG winds become WR

Properties at the onset of the WR phase
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Formation of Wolf-Rayet stars

**End. of
He-burning

= Gap

End of MS

* =40M . : Only models with strong RSG winds become WR

Properties at the onset of the WR phase
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Evolution of Wolf-Rayet stars

4.75 4.50
log (Twsr [K])

60 solar mass evolution in the HRD

4.25
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Evolutionary paths for post-MS massive stars

Low Mass Loss Regime . High MS Mass Loss,Regime
RSGYSG - i o 0 Sheivec L
— Surface temp. incr. W|th mass loss — BSG - — Surface temp. incr. with-mass loss

— H-rich shell removed — : - — H-poor shell exposed —
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Stellar Populations

B RSG WNE
WNL s wWC

1‘.[0]'31 Vin01
A‘[Rg(‘;l Cro01

Mog: Bes20
A'[RSG: Cro01

40 60 120 20
]\-[ini/ﬂ-[*i

Em WO

J"‘[OB: Vin01
A.IRS(;Z Bea20

]\j[()n : Bes20
A‘IRSG: Bea20

40 60 120
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Discussion
What have we learned?

35



(1) There are two dlstlnct reglmes fcr maln sequence
»‘mass loss. | -

(Accordmg to two of the mass Ioss prescrrphons) ' pr— ;

@ Main sequence mass Ioss |mpacts the steIIar .\
structure deeply | |

Structure of convectlve zones (hydrogehshell,’ I\/IS'core) ‘

3 There are two formatlon channels for Wolf Rayet*

stars. i :
Late—forme’d @%B = RSG/YSG = BSG — WNE (— WC/WO)

Early=formed: O/B-—— WNLE" WNE — WC/WO

* For theoretical Wolf-Rayet stars!

36



Im pact ahd |Im|tat|0ns

° Can predlct complete evolutlon Just from I\/IS mass Ioss

| . Inslghts |nto evolutlon of masswe stars in the smgle star non- roﬁatmg plcture
L Invest|gated mass Ioss rates cover a W|de range " s | :
e No Judgement of mass Ioss preserlptlons pOSS|bIe (Iack of observable crlterla)

° No evaIuatlon of the etfects of metaII|C|ty, blnarlty and rotatlon

- =5
o
. A
,:,A‘ .
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(1) There are two dlstlnct reglmes fcr maln sequence
»‘mass loss. | -

(Accordmg to two of the mass Ioss prescrrphons) ' pr— ;

@ Main sequence mass Ioss |mpacts the steIIar .\
structure deeply | |

Structure of convectlve zones (hydrogehshell,’ I\/IS'core) ‘

3 There are two formatlon channels for Wolf Rayet*

stars. i :
Late—forme’d @%B = RSG/YSG = BSG — WNE (— WC/WO)

Early=formed: O/B-—— WNLE" WNE — WC/WO

* For theoretical Wolf-Rayet stars!
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